Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1797, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996223

RESUMO

The identification of short nucleic acids and proteins at the single molecule level is a major driving force for the development of novel detection strategies. Nanopore sensing has been gaining in prominence due to its label-free operation and single molecule sensitivity. However, it remains challenging to detect small molecules selectively. Here we propose to combine the electrical sensing modality of a nanopore with fluorescence-based detection. Selectivity is achieved by grafting either molecular beacons, complementary DNA, or proteins to a DNA molecular carrier. We show that the fraction of synchronised events between the electrical and optical channels, can be used to perform single molecule binding assays without the need to directly label the analyte. Such a strategy can be used to detect targets in complex biological fluids such as human serum and urine. Future optimisation of this technology may enable novel assays for quantitative protein detection as well as gene mutation analysis with applications in next-generation clinical sample analysis.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Nanoporos , Nanotecnologia/métodos , Fluorescência , Humanos , Proteínas/análise , Proteínas/química
2.
Nat Commun ; 8(1): 1552, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146902

RESUMO

The capability to screen a range of proteins at the single-molecule level with enhanced selectivity in biological fluids has been in part a driving force in developing future diagnostic and therapeutic strategies. The combination of nanopore sensing and nucleic acid aptamer recognition comes close to this ideal due to the ease of multiplexing, without the need for expensive labelling methods or extensive sample pre-treatment. Here, we demonstrate a fully flexible, scalable and low-cost detection platform to sense multiple protein targets simultaneously by grafting specific sequences along the backbone of a double-stranded DNA carrier. Protein bound to the aptamer produces unique ionic current signatures which facilitates accurate target recognition. This powerful approach allows us to differentiate individual protein sizes via characteristic changes in the sub-peak current. Furthermore, we show that by using DNA carriers it is possible to perform single-molecule screening in human serum at ultra-low protein concentrations.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Nanoporos , Proteínas/análise , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , DNA/genética , Humanos , Nanotecnologia/métodos , Proteínas/química , Reprodutibilidade dos Testes
3.
Nano Lett ; 17(10): 6376-6384, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28862004

RESUMO

There is a growing realization, especially within the diagnostic and therapeutic community, that the amount of information enclosed in a single molecule can not only enable a better understanding of biophysical pathways, but also offer exceptional value for early stage biomarker detection of disease onset. To this end, numerous single molecule strategies have been proposed, and in terms of label-free routes, nanopore sensing has emerged as one of the most promising methods. However, being able to finely control molecular transport in terms of transport rate, resolution, and signal-to-noise ratio (SNR) is essential to take full advantage of the technology benefits. Here we propose a novel solution to these challenges based on a method that allows biomolecules to be individually confined into a zeptoliter nanoscale droplet bridging two adjacent nanopores (nanobridge) with a 20 nm separation. Molecules that undergo confinement in the nanobridge are slowed down by up to 3 orders of magnitude compared to conventional nanopores. This leads to a dramatic improvement in the SNR, resolution, sensitivity, and limit of detection. The strategy implemented is universal and as highlighted in this manuscript can be used for the detection of dsDNA, RNA, ssDNA, and proteins.

4.
ACS Appl Mater Interfaces ; 7(32): 18188-94, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26204996

RESUMO

The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for selectively opening nanopores in real-time. The tunable nanopores on a quartz nanopipette platform are fabricated using the electroetching of a graphene-based membrane constructed from individual graphene nanoflakes (ø ∼30 nm). The device design allows for in situ opening of the graphene membrane, from fully closed to fully opened (ø ∼25 nm), a feature that has yet to be reported in the literature. The translocation of DNA is studied as the pore size is varied, allowing for subfeatures of DNA to be detected with slower DNA translocations at smaller pore sizes, and the ability to observe trends as the pore is opened. This approach opens the door to creating a device that can be target to detect specific analytes.


Assuntos
Grafite/química , Nanoporos , Técnicas Biossensoriais , DNA/química , DNA/metabolismo , Microscopia de Força Atômica , Nanoporos/ultraestrutura , Nanoestruturas/química
5.
Analyst ; 140(14): 4828-34, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26066550

RESUMO

Nanopipettes are an attractive single-molecule tool for identification and characterisation of nucleic acids and proteins in solutions. They enable label-free analysis and reveal individual molecular properties, which are generally masked by ensemble averaging. Having control over the pore dimensions is vital to ensure that the dimensions of the molecules being probed match those of the pore for optimization of the signal to noise. Although nanopipettes are simple and easy to fabricate, challenges exist, especially when compared to more conventional solid-state analogues. For example, a sub-20 nm pore diameter can be difficult to fabricate and the batch-to-batch reproducibility is often poor. To improve on this limitation, atomic layer deposition (ALD) is used to deposit ultrathin layers of alumina (Al2O3) on the surface of the quartz nanopipettes enabling sub-nm tuning of the pore dimensions. Here, Al2O3 with a thickness of 8, 14 and 17 nm was deposited onto pipettes with a starting pore diameter of 75 ± 5 nm whilst a second batch had 5 and 8 nm Al2O3 deposited with a starting pore diameter of 25 ± 3 nm respectively. This highly conformal process coats both the inner and outer surfaces of pipettes and resulted in the fabrication of pore diameters as low as 7.5 nm. We show that Al2O3 modified pores do not interfere with the sensing ability of the nanopipettes and can be used for high signal-to-noise DNA detection. ALD provides a quick and efficient (batch processing) for fine-tuning nanopipettes for a broad range of applications including the detection of small biomolecules like RNA, aptamers and DNA-protein interactions at the single molecule level.


Assuntos
Nanotecnologia/instrumentação , Óxido de Alumínio/química , Reprodutibilidade dos Testes
6.
Lab Chip ; 11(9): 1664-70, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21431240

RESUMO

We demonstrate a compact, low cost and practical fluorescence detection system for lab-on-a-chip applications. The system comprises a commercially available InGaN light emitting diode (501 nm) as light source, an organic or silicon photodiode detector, absorptive dye coated colour filters and linear and reflective polarisers. An injection moulded polystyrene microfluidic chip is used as the platform for fluorescence immunoassays for cardiac markers myoglobin and CK-MB. The optical limit of detection (LOD) is measured using a TransFluoSphere® suspension at 5.6 × 10(4) beads µl(-1) which can be equated to ∼3 nM fluorescein equivalent concentration. The LOD for the human plasma immunoassays is measured as 1.5 ng ml(-1) for both myoglobin and CK-MB.


Assuntos
Imunofluorescência/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Biomarcadores/sangue , Creatina Quinase Forma MB/sangue , Humanos , Mioglobina/sangue , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...